Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cesk Slov Oftalmol ; 79(6): 325-328, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37996247

RESUMO

In this case report, we describe a 53-year-old woman who presented with a slow-growing lower lid mass in her right eye. On gross examination, a remarkable lower lid bulging was noted. On palpation, a subcutaneous oval-shaped mass with a firm consistency, measuring about 2cm, was noted. The uncorrected visual acuities of the patient were 20/20 (by Snellen chart) bilaterally, and the examinations of the anterior and posterior segments of both eyes were unremarkable. On the orbital Computed Tomography scan of the patient, a solitary and homogenous solid globular mass with the same density of the brain tissue was obvious. The patient underwent surgical excision. Microscopic assessment of the lesion revealed a biphasic hypercellular area (Antoni A) and myxoid hypocellular areas (Antoni B), containing slender cells with tapered ends, interspersed with collagen fibers, consistent with a diagnosis of schwannoma. In addition, some foci of nuclear palisading around the fibrillary process (Verocay bodies) could frequently be found throughout the highly cellular regions. Schwannomas rarely occur in the eyelids, but have clinical and paraclinical indicators which indicate the probable diagnosis. In conclusion, we suggest that eyelid schwannoma be considered as an element of the differential diagnoses list for subcutaneous lesions of the eyelid.


Assuntos
Neurilemoma , Feminino , Humanos , Pessoa de Meia-Idade , Neurilemoma/diagnóstico , Neurilemoma/cirurgia , Neurilemoma/patologia , Diagnóstico Diferencial , Pálpebras/patologia
2.
Cesk Slov Oftalmol ; 79(2): 102-106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37072258

RESUMO

AIMS: To introduce a case report and review the literature on trauma-related acute macular neuroretinopathy as an unusual etiology of acute macular neuroretinopathy. MATERIAL AND METHODS: A 24-year-old man presented with unilateral paracentral scotoma following non-ocular trauma in a car accident. The relative afferent pupillary defect was negative and the best corrected visual acuities of both eyes were 10/10 (by the Snellen chart scale). RESULTS: Retinoscopy revealed a reduced foveal reflex, along with a small pre-retinal hemorrhage over the mid-pathway of the supranasal arteriole. OCT images showed an obvious ellipsoid zone (EZ) layer disruption in the macula of the left eye. The infrared fundus photograph of the same eye revealed a distinct hyporeflective area involving the macula. On fundus angiography, no macular vascular lesion was detected. The scotoma persisted after 3 months follow-up. CONCLUSION: Non-ocular trauma including head or chest trauma without direct ocular injury accounts for most cases of trauma-related acute macular neuroretinopathy. It is important to distinguish this entity, given that there are also unremarkable findings in the retinal examination of these patients. Indeed, proper clinical suspicion leads to further suitable investigations and impedes other extraordinary images, which are the basic rules in the management of traumatic patients suffering multiple injuries and incurring medical expenses.


Assuntos
Traumatismos Oculares , Macula Lutea , Doenças Retinianas , Síndrome dos Pontos Brancos , Masculino , Humanos , Adulto Jovem , Adulto , Doenças Retinianas/diagnóstico , Doenças Retinianas/etiologia , Tomografia de Coerência Óptica/efeitos adversos , Tomografia de Coerência Óptica/métodos , Angiofluoresceinografia/efeitos adversos , Macula Lutea/patologia , Escotoma/etiologia , Escotoma/complicações , Traumatismos Oculares/complicações , Traumatismos Oculares/diagnóstico , Síndrome dos Pontos Brancos/complicações , Síndrome dos Pontos Brancos/patologia , Doença Aguda
3.
Cardiovasc Diabetol ; 22(1): 17, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707786

RESUMO

BACKGROUND: Type 2 Diabetes mellitus (T2DM) is a major risk factor for cardiovascular disease and associated with poor outcome after myocardial infarction (MI). In T2DM, cardiac metabolic flexibility, i.e. the switch between carbohydrates and lipids as energy source, is disturbed. The RabGTPase-activating protein TBC1D4 represents a crucial regulator of insulin-stimulated glucose uptake in skeletal muscle by controlling glucose transporter GLUT4 translocation. A human loss-of-function mutation in TBC1D4 is associated with impaired glycemic control and elevated T2DM risk. The study's aim was to investigate TBC1D4 function in cardiac substrate metabolism and adaptation to MI. METHODS: Cardiac glucose metabolism of male Tbc1d4-deficient (D4KO) and wild type (WT) mice was characterized using in vivo [18F]-FDG PET imaging after glucose injection and ex vivo basal/insulin-stimulated [3H]-2-deoxyglucose uptake in left ventricular (LV) papillary muscle. Mice were subjected to cardiac ischemia/reperfusion (I/R). Heart structure and function were analyzed until 3 weeks post-MI using echocardiography, morphometric and ultrastructural analysis of heart sections, complemented by whole heart transcriptome and protein measurements. RESULTS: Tbc1d4-knockout abolished insulin-stimulated glucose uptake in ex vivo LV papillary muscle and in vivo cardiac glucose uptake after glucose injection, accompanied by a marked reduction of GLUT4. Basal cardiac glucose uptake and GLUT1 abundance were not changed compared to WT controls. D4KO mice showed mild impairments in glycemia but normal cardiac function. However, after I/R D4KO mice showed progressively increased LV endsystolic volume and substantially increased infarction area compared to WT controls. Cardiac transcriptome analysis revealed upregulation of the unfolded protein response via ATF4/eIF2α in D4KO mice at baseline. Transmission electron microscopy revealed largely increased extracellular matrix (ECM) area, in line with decreased cardiac expression of matrix metalloproteinases of D4KO mice. CONCLUSIONS: TBC1D4 is essential for insulin-stimulated cardiac glucose uptake and metabolic flexibility. Tbc1d4-deficiency results in elevated cardiac endoplasmic reticulum (ER)-stress response, increased deposition of ECM and aggravated cardiac damage following MI. Hence, impaired TBC1D4 signaling contributes to poor outcome after MI.


Assuntos
Diabetes Mellitus Tipo 2 , Infarto do Miocárdio , Masculino , Camundongos , Humanos , Animais , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Insulina/farmacologia , Músculo Esquelético/metabolismo , Infarto do Miocárdio/metabolismo , Reperfusão , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo
5.
Clin Radiol ; 74(1): 79.e11-79.e14, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30322707

RESUMO

AIM: To assess the quality of YouTube videos explaining transrectal ultrasound (TRUS)-guided biopsies of the prostate. MATERIALS AND METHODS: A search of YouTube was made for the terms "TRUS", "TRUS biopsy", "transrectal ultrasound", and "prostate biopsy". Videos were selected from the first 10 pages of results and reviewed by three authors against criteria based on written information from the British Association of Urological Surgeons. They were given a qualitative rating based on how well they provided information on factors such as preparation for the procedure, mechanism of the procedure and possible side effects. Data were also collected on view count, country of origin, likes, and dislikes. RESULTS: A total of 41 videos were reviewed, with no videos achieving an "excellent" rating, 32 being rated as "very poor", and only one rated as "good". Despite the poor-quality information, 39 of the videos were from healthcare organisations or individual surgeons. Videos often lacked specific information, or were targeted at healthcare professionals instead of patients. CONCLUSION: The information about TRUS-guided prostate biopsies on YouTube was not of a sufficiently high standard to allow patients to make informed decisions. Healthcare professionals hence have a duty to point patients towards adequate sources of reputable information online. Furthermore, there remains an opportunity to produce high-quality, informative, patient-focussed medical YouTube videos.


Assuntos
Biópsia Guiada por Imagem , Educação de Pacientes como Assunto/métodos , Próstata/patologia , Neoplasias da Próstata/diagnóstico , Mídias Sociais , Humanos , Biópsia Guiada por Imagem/métodos , Biópsia Guiada por Imagem/psicologia , Masculino , Neoplasias da Próstata/patologia , Ultrassonografia , Gravação em Vídeo
6.
Mol Metab ; 6(11): 1443-1453, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29107291

RESUMO

OBJECTIVE: Ribosomal protein S6 Kinase-1 (S6K1) has been linked to resistance exercise-mediated improvements in glycemia. We hypothesized that S6K1 may also play a role in regulating glycemic control in response to endurance exercise training. METHODS: S6k1-knockout (S6K1KO) and WT mice on a 60 cal% high-fat diet were trained for 4 weeks on treadmills, metabolically phenotyped, and compared to sedentary controls. RESULTS: WT mice showed improved glucose tolerance after training. In contrast, S6K1KO mice displayed equally high glucose tolerance already in the sedentary state with no further improvement after training. Similarly, training decreased mitochondrial ROS production in skeletal muscle of WT mice, whereas ROS levels were already low in the sedentary S6K1KO mice with no further decrease after training. Nevertheless, trained S6K1KO mice displayed an increased running capacity compared to trained WT mice, as well as substantially reduced triglyceride contents in liver and skeletal muscle. The improvements in glucose handling and running endurance in S6K1KO mice were associated with markedly increased ketogenesis and a higher respiratory exchange ratio. CONCLUSIONS: In high-fat fed mice, loss of S6K1 mimics endurance exercise training by reducing mitochondrial ROS production and upregulating oxidative utilization of ketone bodies. Pharmacological targeting of S6K1 may improve the outcome of exercise-based interventions in obesity and diabetes.


Assuntos
Glucose/metabolismo , Músculo Esquelético/fisiologia , Estresse Oxidativo/fisiologia , Resistência Física/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/deficiência , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais , Glicemia/metabolismo , Dieta Hiperlipídica , Gorduras na Dieta/metabolismo , Treino Aeróbico , Tolerância ao Exercício/fisiologia , Teste de Tolerância a Glucose , Insulina/metabolismo , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Oxirredução , Estresse Oxidativo/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Corrida
7.
Int J Obes (Lond) ; 40(8): 1242-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27089993

RESUMO

BACKGROUND: Variants in the gene TBC1D1 have been previously associated with obesity-related traits in several species, including humans, mice, rabbits and chicken. While in humans variants in TBC1D1 were linked to obesity, disruption of the Tbc1d1 gene reduced body weight in mice. TBC1D1 has been identified as a regulator of insulin-dependent glucose transport in skeletal muscle, however, its role in energy homeostasis in the obese state remains unclear. The impact of TBC1D1 deficiency on energy homeostasis, glucose and lipid metabolism in an established mouse model of obesity was examined. METHODS: Obese leptin (ob/ob)- and Tbc1d1-double-deficient mice (D1KO-ob/ob) were generated by crossing obese B6.V.Lep(ob/ob)-mice with lean Tbc1d1-deficient mice on a C57BL/6J background. Male mice on either standard (SD) or high-fat diet (HFD) were analyzed for body weight, body composition, food intake, voluntary physical activity and energy expenditure by indirect calorimetry. Glucose and insulin tolerance as well as glucose transport and fatty acid oxidation in skeletal muscle were analyzed. RESULTS: In obese mice, Tbc1d1 deficiency resulted in reduced body weight on both SD and HFD. However, food intake was unchanged on SD or even increased in HFD-fed Tbc1d1-deficient mice without alterations in voluntary physical activity. Despite substantially reduced insulin-stimulated glucose transport and increased fatty acid oxidation in intact isolated skeletal muscle, obese Tbc1d1-deficient mice showed no gross changes in glycemia and glucose tolerance compared with obese controls. Indirect calorimetry revealed that obese Tbc1d1-deficient mice had a decreased respiratory quotient together with increased daily energy expenditure. CONCLUSIONS: In obese leptin-deficient mice, lack of TBC1D1 has no impact on feeding behavior or energy intake but results in increased energy expenditure, altered energy substrate preference with increased fatty acid oxidation and suppression of obesity. TBC1D1 may have an evolutionary conserved role in regulating energy homeostasis in vertebrates.


Assuntos
Metabolismo Energético , Proteínas Ativadoras de GTPase/deficiência , Deleção de Genes , Leptina/deficiência , Obesidade/genética , Obesidade/prevenção & controle , Animais , Transporte Biológico , Calorimetria Indireta , Dieta Hiperlipídica , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Proteínas Ativadoras de GTPase/genética , Glucose/metabolismo , Homeostase , Insulina/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Obesos , Músculo Esquelético/metabolismo
8.
Aust Dent J ; 58(2): 176-82, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23713637

RESUMO

BACKGROUND: This study aimed to investigate the potential toxic effects of leached components from either a methacrylate-based composite (Filtek Z250) or a silorane-based composite (Filtek P90) on the male mice reproductive system. METHODS: Sixty adult Syrian male mice were divided into six groups. In test groups, leached components from composite specimens in artificial saliva or 75% aqueous ethanol solution were administered intragastrically daily for 28 days. The mice were then euthanized and the following reproductive parameters recorded: body weight changes; weight of paired testes; testis volume; Gonadosomatic Index (GSI); sperm motility; sperm viability; daily sperm production and epididymal sperm count. RESULTS: There were no significant differences in body weight changes, weight of paired testes, GSI, testis volume, epididymal sperm count, and daily sperm production between groups. Sperm motility and sperm viability were significantly lower in all the test groups in comparison to the control groups. In addition, they were significantly lower in the test groups in which composite samples were immersed in aqueous ethanol solution. CONCLUSIONS: Within the limitations of this study, the present data indicate that leached components from dental composites could affect sperm quality and therefore could potentially cause adverse effects on the male mice reproductive system.


Assuntos
Resinas Compostas/toxicidade , Genitália Masculina/efeitos dos fármacos , Resinas de Silorano/toxicidade , Espermatozoides/efeitos dos fármacos , Animais , Peso Corporal , Resinas Compostas/química , Materiais Dentários/química , Materiais Dentários/toxicidade , Masculino , Metacrilatos/química , Metacrilatos/toxicidade , Camundongos , Saliva Artificial , Resinas de Silorano/química , Contagem de Espermatozoides , Espermatogênese/efeitos dos fármacos , Espermatozoides/fisiologia , Testículo/efeitos dos fármacos , Testículo/patologia
9.
Diabetologia ; 56(5): 1118-28, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23460019

RESUMO

AIMS/HYPOTHESIS: The proline-rich Akt substrate of 40 kDa (PRAS40) is a component of the mammalian target of rapamycin complex 1 (mTORC1) and among the most prominent Akt substrates in skeletal muscle. Yet the cellular functions of PRAS40 are incompletely defined. This study assessed the function of PRAS40 in insulin action in primary human skeletal muscle cells (hSkMC). METHODS: Insulin action was examined in hSkMC following small interfering RNA-mediated silencing of PRAS40 (also known as AKT1S1) under normal conditions and following chemokine-induced insulin resistance. RESULTS: PRAS40 knockdown (PRAS40-KD) in hSkMC decreased insulin-mediated phosphorylation of Akt by 50% (p < 0.05) as well as of the Akt substrates glycogen synthase kinase 3 (40%) and tuberous sclerosis complex 2 (32%) (both p < 0.05). Furthermore, insulin-stimulated glucose uptake was reduced by 20% in PRAS40-KD myotubes (p < 0.05). Exposing PRAS40-KD myotubes to chemokines caused no additional deterioration of insulin action. PRAS40-KD further reduced insulin-mediated phosphorylation of the mTORC1-regulated proteins p70S6 kinase (p70S6K) (47%), S6 (43%), and eukaryotic elongation 4E-binding protein 1 (100%), as well as protein levels of growth factor receptor bound protein 10 (35%) (all p < 0.05). The inhibition of insulin action in PRAS40-KD myotubes was associated with a reduction in IRS1 protein levels (60%) (p < 0.05), and was reversed by pharmacological proteasome inhibition. Accordingly, expression of the genes encoding E3-ligases F-box protein 32 (also known as atrogin-1) and muscle RING-finger protein-1 and activity of the proteasome was elevated in PRAS40-KD myotubes. CONCLUSIONS/INTERPRETATION: Inhibition of insulin action in PRAS40-KD myotubes was found to associate with IRS1 degradation promoted by increased proteasome activity rather than hyperactivation of the p70S6K-negative-feedback loop. These findings identify PRAS40 as a modulator of insulin action.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hipoglicemiantes/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Insulina Regular de Porco/farmacologia , Músculo Esquelético/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Células Cultivadas , Quimiocina CCL2/metabolismo , Quimiocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Feminino , Inativação Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Músculo Esquelético/citologia , Músculo Esquelético/imunologia , Músculo Esquelético/metabolismo , Fosforilação/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno , Proteínas Recombinantes/metabolismo , Regulação para Cima/efeitos dos fármacos
10.
Am J Physiol Endocrinol Metab ; 304(5): E495-506, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23277187

RESUMO

Ectopic expression of uncoupling protein 1 (UCP1) in skeletal muscle (SM) mitochondria increases lifespan considerably in high-fat diet-fed UCP1 Tg mice compared with wild types (WT). To clarify the underlying mechanisms, we investigated substrate metabolism as well as oxidative stress damage and antioxidant defense in SM of low-fat- and high-fat-fed mice. Tg mice showed an increased protein expression of phosphorylated AMP-activated protein kinase, markers of lipid turnover (p-ACC, FAT/CD36), and an increased SM ex vivo fatty acid oxidation. Surprisingly, UCP1 Tg mice showed elevated lipid peroxidative protein modifications with no changes in glycoxidation or direct protein oxidation. This was paralleled by an induction of catalase and superoxide dismutase activity, an increased redox signaling (MAPK signaling pathway), and increased expression of stress-protective heat shock protein 25. We conclude that increased skeletal muscle mitochondrial uncoupling in vivo does not reduce the oxidative stress status in the muscle cell. Moreover, it increases lipid metabolism and reactive lipid-derived carbonyls. This stress induction in turn increases the endogenous antioxidant defense system and redox signaling. Altogether, our data argue for an adaptive role of reactive species as essential signaling molecules for health and longevity.


Assuntos
Antioxidantes/metabolismo , Longevidade/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Aconitato Hidratase/metabolismo , Animais , Biomarcadores , Composição Corporal/efeitos dos fármacos , Composição Corporal/genética , Composição Corporal/fisiologia , Catalase/sangue , Gorduras na Dieta/efeitos adversos , Ácidos Graxos/metabolismo , Resistência à Insulina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Musculares/biossíntese , Proteínas Musculares/genética , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Superóxido Dismutase/metabolismo , Triglicerídeos/sangue
11.
Diabetes Obes Metab ; 14 Suppl 3: 57-67, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22928565

RESUMO

ß-Cell dysfunction is a critical component in the development of type 2 diabetes. Whilst both genetic and environmental factors contribute to the development of the disease, relatively little is known about the molecular network that is responsible for diet-induced functional changes in pancreatic ß-cells. Recent genome-wide association studies for diabetes-related traits have generated a large number of candidate genes that constitute possible links between dietary factors and the genetic susceptibility for ß-cell failure. Here, we summarize recent approaches for identifying nutritionally regulated transcripts in islets on a genome-wide scale. Polygenic mouse models for type 2 diabetes have been instrumental for investigating the mechanism of diet-induced ß-cell dysfunction. Enhanced oxidative metabolism, triggered by a combination of dietary carbohydrates and fat, appears to play a critical role in the pathophysiology of diet-induced impairment of islets. More systematic studies of gene-diet interactions in ß-cells of rodent models in combination with genetic profiling might reveal the regulatory circuits fundamental for the understanding of diet-induced impairments of ß-cell function in humans.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Dieta , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Polimorfismo de Nucleotídeo Único , Animais , Diabetes Mellitus Tipo 2/dietoterapia , Diabetes Mellitus Tipo 2/genética , Epigênese Genética , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Teste de Tolerância a Glucose , Humanos , Insulina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Herança Multifatorial
12.
Diabetologia ; 53(2): 309-20, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19902174

RESUMO

AIMS/HYPOTHESIS: Numerous new genes have recently been identified in genome-wide association studies for type 2 diabetes. Most are highly expressed in beta cells and presumably play important roles in their function. However, these genes account for only a small proportion of total risk and there are likely to be additional candidate genes not detected by current methodology. We therefore investigated islets from the polygenic New Zealand mouse (NZL) model of diet-induced beta cell dysfunction to identify novel genes and pathways that may play a role in the pathogenesis of diabetes. METHODS: NZL mice were fed a diabetogenic high-fat diet (HF) or a diabetes-protective carbohydrate-free HF diet (CHF). Pancreatic islets were isolated by laser capture microdissection (LCM) and subjected to genome-wide transcriptome analyses. RESULTS: In the prediabetic state, 2,109 islet transcripts were differentially regulated (>1.5-fold) between HF and CHF diets. Of the genes identified, 39 (e.g. Cacna1d, Chd2, Clip2, Igf2bp2, Dach1, Tspan8) correlated with data from the Diabetes Genetics Initiative and Wellcome Trust Case Control Consortium genome-wide scans for type 2 diabetes, thus validating our approach. HF diet induced early changes in gene expression associated with increased cell-cycle progression, proliferation and differentiation of islet cells, and oxidative stress (e.g. Cdkn1b, Tmem27, Pax6, Cat, Prdx4 and Txnip). In addition, pathway analysis identified oxidative phosphorylation as the predominant gene-set that was significantly upregulated in response to the diabetogenic HF diet. CONCLUSIONS/INTERPRETATION: We demonstrated that LCM of pancreatic islet cells in combination with transcriptional profiling can be successfully used to identify novel candidate genes for diabetes. Our data strongly implicate glucose-induced oxidative stress in disease progression.


Assuntos
Dieta para Diabéticos , Dieta , Regulação da Expressão Gênica , Ilhotas Pancreáticas/fisiologia , Síndrome Metabólica/genética , Animais , Ciclo Celular/genética , Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Amplificação de Genes , Perfilação da Expressão Gênica , Hiperglicemia/genética , Hiperglicemia/prevenção & controle , Ilhotas Pancreáticas/citologia , Cinética , Masculino , Síndrome Metabólica/veterinária , Camundongos , Herança Multifatorial , Reação em Cadeia da Polimerase , RNA/genética , RNA/isolamento & purificação , Transcrição Gênica
14.
Int J Obes (Lond) ; 31(5): 829-41, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17060928

RESUMO

OBJECTIVE: Cross-breeding experiments with different mouse strains have successfully been used by many groups to identify genetic loci that predispose for obesity. In order to provide a statistical assessment of these quantitative trait loci (QTL) as a basis for a systematic investigation of candidate genes, we have performed a meta-analysis of genome-wide linkage scans for body weight and body fat. DATA: From a total of 34 published mouse cross-breeding experiments, we compiled a list of 162 non-redundant QTL for body weight and 117 QTL for fat weight and body fat percentage. Collectively, these studies include data from 42 different parental mouse strains and >14,500 individual mice. METHODS: The results of the studies were analyzed using the truncated product method (TPM). RESULTS: The analysis revealed significant evidence (logarithm of odds (LOD) score >4.3) for linkage of body weight and adiposity to 49 different segments of the mouse genome. The most prominent regions with linkage for body weight and body fat (LOD scores 14.8-21.8) on chromosomes 1, 2, 7, 11, 15, and 17 contain a total of 58 QTL for body weight and body fat. At least 34 candidate genes and genetic loci, which have been implicated in regulation of body weight and body composition in rodents and/or humans, are found in these regions, including CCAAT/enhancer-binding protein alpha (C/EBPA), sterol regulatory element-binding transcription factor 1 (SREBP-1), peroxisome proliferator activator receptor delta (PPARD), and hydroxysteroid 11-beta dehydrogenase 1 (HSD11B1). Our results demonstrate the presence of numerous distinct consensus QTL regions with highly significant LOD scores that control body weight and body composition. An interactive physical map of the QTL is available online at (http://www.obesitygenes.org).


Assuntos
Peso Corporal/genética , Genoma/genética , Obesidade/genética , Locos de Características Quantitativas/genética , Tecido Adiposo , Animais , Humanos , Camundongos , Especificidade da Espécie
15.
Biochemistry ; 40(47): 14268-78, 2001 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-11714281

RESUMO

To study the role of kinase dimerization in the activation of the insulin receptor (IR) and the insulin-like growth factor receptor-1 (IGF-1R), we have cloned, expressed, and purified monomeric and dimeric forms of the corresponding soluble kinase domains via the baculovirus expression system. Dimerization of the kinases was achieved by fusion of the kinase domains to the homodimeric glutathione S-transferase (GST). Kinetic analyses revealed that kinase dimerization results in substantial increases (10-100-fold) in the phosphotransferase activity in both the auto- and substrate phosphorylation reactions. Furthermore, kinase dimerization rendered the autophosphorylation reaction concentration-independent. However, whereas dimerization was required for the rapid autophosphorylation of the kinases, it was not essential for the enhanced kinase activity in substrate phosphorylation reactions. Comparison of HPLC-phosphopeptide maps of the monomeric and dimeric kinases revealed that dimerization leads to an increased phosphorylation of the regulatory activation loop of the kinases, strongly suggesting that bis- and trisphosphorylation of the activation loop are mediated by transphosphorylation within the kinase dimers. Most strikingly, limited proteolysis revealed that GST-mediated dimerization by itself had a major impact on the conformation of the activation loop by stabilizing a conformation that corresponds to the active, phosphorylated form of the kinase. Thus, in analogy to the insulin/IGF-1-ligated holoreceptors, the dimeric GST-kinases are primed to rapid autophosphorylation by an increase in the local concentration of both phosphoryl donor and phosphoryl acceptor sites and by a dimerization-induced conformational change of the activation loop that leads to an efficient transphosphorylation of the regulatory tyrosine residues.


Assuntos
Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Dimerização , Ativação Enzimática , Glutationa Transferase/genética , Cinética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Polilisina/farmacologia , Ligação Proteica , Receptor IGF Tipo 1/genética , Receptor de Insulina/genética , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade , Tirosina/metabolismo , Domínios de Homologia de src
16.
Biochem J ; 358(Pt 2): 517-22, 2001 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-11513753

RESUMO

The subcellular targeting of the two recently cloned novel mammalian glucose transporters, GLUT6 [previously referred to as GLUT9 [Doege, Bocianski, Joost and Schürmann (2000) Biochem. J. 350, 771-776] and GLUT8, was analysed by expression of haemagglutinin (HA)-epitope-tagged GLUTs in transiently transfected primary rat adipose cells. Similar to HA-GLUT4, both transporters, HA-GLUT6 and HA-GLUT8, were retained in intracellular compartments in non-stimulated cells. In contrast, mutation of the N-terminal dileucine motifs in both constructs led to constitutive expression of the proteins on the plasma membrane. Likewise, when endocytosis was blocked by co-expression of a dominant-negative mutant of the dynamin GTPase, wild-type HA-GLUT6 and HA-GLUT8 accumulated on the cell surface. However, in contrast with HA-GLUT4, no translocation of HA-GLUT6 and HA-GLUT8 to the plasma membrane was observed when the cells were stimulated with insulin, phorbol ester or hyperosmolarity. Thus GLUT6 and GLUT8 appear to recycle in a dynamin-dependent manner between internal membranes and the plasma membrane in rat adipose cells, but are unresponsive to stimuli that induce translocation of GLUT4.


Assuntos
Adipócitos/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Musculares , Animais , Células COS , Membrana Celular/metabolismo , Células Cultivadas , Dinaminas , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas Facilitadoras de Transporte de Glucose , Transportador de Glucose Tipo 4 , Hemaglutininas/genética , Insulina/farmacologia , Membranas Intracelulares/metabolismo , Masculino , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/genética , Mutação , Estrutura Terciária de Proteína , Transporte Proteico , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
17.
J Cell Sci ; 114(Pt 2): 353-65, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11148137

RESUMO

Although uncoating of clathrin-coated vesicles is a key event in clathrin-mediated endocytosis it is unclear what prevents uncoating of clathrin-coated pits before they pinch off to become clathrin-coated vesicles. We have shown that the J-domain proteins auxilin and GAK are required for uncoating by Hsc70 in vitro. In the present study, we expressed auxilin in cultured cells to determine if this would block endocytosis by causing premature uncoating of clathrin-coated pits. We found that expression of auxilin indeed inhibited endocytosis. However, expression of auxilin with its J-domain mutated so that it no longer interacted with Hsc70 also inhibited endocytosis as did expression of the clathrin-assembly protein, AP180, or its clathrin-binding domain. Accompanying this inhibition, we observed a marked decrease in clathrin associated with the plasma membrane and the trans-Golgi network, which provided us with an opportunity to determine whether the absence of clathrin from clathrin-coated pits affected the distribution of the clathrin assembly proteins AP1 and AP2. Surprisingly we found almost no change in the association of AP2 and AP1 with the plasma membrane and the trans-Golgi network, respectively. This was particularly obvious when auxilin or GAK was expressed with functional J-domains since, in these cases, almost all of the clathrin was sequestered in granules that also contained Hsc70 and auxilin or GAK. We conclude that expression of clathrin-binding proteins inhibits clathrin-mediated endocytosis by sequestering clathrin so that it is no longer available to bind to nascent pits but that assembly proteins bind to these pits independently of clathrin.


Assuntos
Clatrina/metabolismo , Invaginações Revestidas da Membrana Celular/fisiologia , Endocitose/fisiologia , Proteínas Monoméricas de Montagem de Clatrina , Proteínas Musculares , Proteínas do Tecido Nervoso/metabolismo , Fosfoproteínas/metabolismo , Transferrina/metabolismo , Complexo 1 de Proteínas Adaptadoras , Complexo 2 de Proteínas Adaptadoras , Proteínas Adaptadoras de Transporte Vesicular , Animais , Transporte Biológico , Células COS , Chlorocebus aethiops , Invaginações Revestidas da Membrana Celular/ultraestrutura , Transportador de Glucose Tipo 4 , Proteínas de Choque Térmico HSC70 , Proteínas de Choque Térmico HSP70/metabolismo , Células HeLa , Humanos , Cinética , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas do Tecido Nervoso/genética , Fosfoproteínas/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Tensinas , Transfecção
18.
FEBS Lett ; 479(1-2): 67-71, 2000 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-10940390

RESUMO

Previously, several studies have demonstrated that autophosphorylation of the C-terminal tyrosine residues (Tyr1316 and Tyr1322) affects the signaling properties of the insulin receptor in vivo. To assess the biochemical consequences of the C-terminal phosphorylation in vitro, we have constructed, purified and characterized 45 kDa soluble insulin receptor kinase domains (IRKD), either with (IRKD) or without (IRKD-Y2F) the two C-terminal tyrosine phosphorylation sites, respectively. According to HPLC phosphopeptide mapping, autophosphorylation of the three tyrosines in the activation loop of the IRKD-Y2F kinase (Tyr1146, Tyr1150, and Tyr1151) was not affected by the mutation. In addition, the Y2F mutation did not significantly change the Km values for exogenous substrates. However, the mutation in IRKD-Y2F resulted in a decrease in the maximum velocities of the phosphotransferase reaction in substrate phosphorylation reactions. Moreover, the exchange of the tyrosines in IRKD-Y2F led to an increase in the apparent Km values for ATP, suggesting a cross-talk of the C-terminus and the catalytic domain of the enzyme. In addition, as judged by size exclusion chromatography, conformational changes of the enzyme following autophosphorylation were abolished by the removal of the two C-terminal tyrosines. These data suggest a regulatory role of the two C-terminal phosphorylation sites in the phosphotransferase activity of the insulin receptor.


Assuntos
Receptor de Insulina/química , Receptor de Insulina/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Primers do DNA/genética , Técnicas In Vitro , Cinética , Mutagênese Sítio-Dirigida , Fosforilação , Estrutura Terciária de Proteína , Receptor de Insulina/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Spodoptera , Tirosina/química , Tirosina/metabolismo
19.
J Biol Chem ; 275(36): 28246-53, 2000 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-10862609

RESUMO

Dehydroascorbic acid (DHA), the first stable oxidation product of vitamin C, was transported by GLUT1 and GLUT3 in Xenopus laevis oocytes with transport rates similar to that of 2-deoxyglucose (2-DG), but due to inherent difficulties with GLUT4 expression in oocytes it was uncertain whether GLUT4 transported DHA (Rumsey, S. C. , Kwon, O., Xu, G. W., Burant, C. F., Simpson, I., and Levine, M. (1997) J. Biol. Chem. 272, 18982-18989). We therefore studied DHA and 2-DG transport in rat adipocytes, which express GLUT4. Without insulin, rat adipocytes transported 2-DG 2-3-fold faster than DHA. Preincubation with insulin (0.67 micrometer) increased transport of each substrate similarly: 7-10-fold for 2-DG and 6-8-fold for DHA. Because intracellular reduction of DHA in adipocytes was complete before and after insulin stimulation, increased transport of DHA was not explained by increased internal reduction of DHA to ascorbate. To determine apparent transport kinetics of GLUT4 for DHA, GLUT4 expression in Xenopus oocytes was reexamined. Preincubation of oocytes for >4 h with insulin (1 micrometer) augmented GLUT4 transport of 2-DG and DHA by up to 5-fold. Transport of both substrates was inhibited by cytochalasin B and displayed saturable kinetics. GLUT4 had a higher apparent transport affinity (K(m) of 0.98 versus 5.2 mm) and lower maximal transport rate (V(max) of 66 versus 880 pmol/oocyte/10 min) for DHA compared with 2-DG. The lower transport rate for DHA could not be explained by binding differences at the outer membrane face, as shown by inhibition with ethylidene glucose, or by transporter trans-activation and therefore was probably due to substrate-specific differences in transporter/substrate translocation or release. These novel data indicate that the insulin-sensitive transporter GLUT4 transports DHA in both rat adipocytes and Xenopus oocytes. Alterations of this mechanism in diabetes could have clinical implications for ascorbate utilization.


Assuntos
Adipócitos/metabolismo , Ácido Ascórbico/metabolismo , Ácido Desidroascórbico/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Musculares , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Transporte Biológico , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Desoxiglucose/metabolismo , Epididimo , Transportador de Glucose Tipo 4 , Insulina/farmacologia , Cinética , Masculino , Oócitos/fisiologia , Ratos , Ratos Sprague-Dawley , Xenopus laevis
20.
FEBS Lett ; 460(2): 338-42, 1999 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-10544260

RESUMO

In adipose cells, insulin induces the translocation of GLUT4 by stimulating their exocytosis from a basal intracellular compartment to the plasma membrane. Increasing overexpression of a hemagglutinin (HA) epitope-tagged GLUT4 in rat adipose cells results in a roughly proportional increase in cell surface HA-GLUT4 levels in the basal state, accompanied by a marked reduction of the fold HA-GLUT4 translocation in response to insulin. Using biochemical methods and cotransfection experiments with differently epitope-tagged GLUT4, we show that overexpression of GLUT4 does not affect the intracellular sequestration of GLUT4 in the absence of insulin, but rather reduces the relative insulin-stimulated GLUT4 translocation to the plasma membrane. In contrast, overexpression of GLUT1 does not interfere with the targeting of GLUT4 and vice versa. These results suggest that the mechanism involved in the intracellular sequestration of GLUT4 has a high capacity whereas the mechanism for GLUT4 translocation is readily saturated by overexpression of GLUT4, implicating an active translocation machinery in the exocytosis of GLUT4.


Assuntos
Adipócitos/metabolismo , Insulina/farmacologia , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Musculares , Animais , Transporte Biológico/efeitos dos fármacos , Western Blotting , Células Cultivadas , Relação Dose-Resposta a Droga , Transportador de Glucose Tipo 4 , Hemaglutininas/metabolismo , Proteínas de Membrana/metabolismo , Plasmídeos/metabolismo , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...